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REFLECTED SHOCK INITIATION OF A CHEMICAL PEACTION

ABSTRACT

The lLax finite difference method is used to compute the
hydrodynamic flow which results from the initiation of a chemical
reaction by a reflected shock weve. The chemical reaction 1s assumed
to be irreversible and of first order; initial conditions are chosen

such that negligible reaction occurs behind the incident shock front.
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70 specific heat ratio of species A
4 specific heat ratio of species B
1 mass fraction of A
Superscript
* denotes dimensional quantity
Subscript
o) denotes initial conditions in the unshocked species A.




INTRODUCTION

The study of chemicel kinetics by reflected shock téchniques has
been the subject of many recent 1nvestigationsl‘s*. The major advantages
of the reflected shock technique are that higher temperatures are
attainable than with incident shock techniques and, secondly, the gas
behind a normally reflected wave is nearly stationary, thus the

reaction is more readily observed.

In kinetic stu2i2~, ~ly error in the temperature is liable to cause
serious errors in the determination of the reaction rates; thus, it is
necessary to be able to infer temperature precisely from measured shock
parameters. Numerous investigators have inferred shock temperatures
behind reflected waves from measurements of pressure, density, etc., and
have found that temperatures may be lower than theoretical by ebout 2
percents-T. Strehlow and Case3 and Rudingers, however, have found that
temperatures behind the reflected wave may be slightly higher than the
values computed from ideal, steady-state shock tube theory. Johnson and
BrittonS have demonstrated the existence of lower reaction rates -- which
imply lower temperatures -- tehind the reflected shock wave, whereas,
Fishburne et 819 have shown the existence of slightly higher reaction
rates behind the reflected wave.

Strehlow and Cohenh have demonstrated the usefulness of reflected
shock techniques in the study of initiation of detonations. They have
observed the reaction wave behind the reflected shock and have noted
that under certain conditions the reaction wave either developed into
a detonation wave before interacting with the reflected wave, or over-
took the reflected wave first and then developed into s detonation wave,
or, finslly, the 1eaction merely sccelerated the reflected wave,

.Supcnoript nunbgre denote references which may be found om page 31.
9




EQUATIONS

Assume that we have a semi-infinite tube extending 'from xX* = @ to
X = L: and that the tube contains a gaseous species A which i1s capable
of undergoing the irreversible, exothermic reaction A = B. Furthermore,
assume that the initial pressure distribution to be the plecewise
uniform state, pg for x* > 0 and pi > pg for x* £ 0. The flow velocity
\rz for x* > 0 is assumed to be zero, the temperature to be '1‘o and
specific volume to be Vg. Initial conditions for x* < O are given by
the idesl gas Hugoniot conditions. In our sample calculations we shall
assume that pﬂl*/pg = 4.5; thus the incident shock speed, in units of the
ambient sound speed cg of species A at pg , Tg, and of specific heat
ratio, 7, of 7/5, is 2. The parameters in the assumed reaction rate
equation are chosen such that negligible reaction occurs behind the
incident shock front. Under these conditions, the incident wave will
reach the closed end of the tube, x* = I*, at about L:/ (2cg) time
units. The shock reflection results in an increase of temperature
wvhich causes further reaction to occur; this increased reaction resulis
in the formation of a compressive wave which eventually overtakes the
reflected wvave. This process will be evident in the numerical solution
of the partial differential equations which describe the reactive flow.
See, for example, Figure 12.

The equations descridbing the non-steady, non-viscous, one-
dimensional flow of a reacting fluid in vhich the irrevereible, first
order chemical reaction A < B takes place may be written in the

Lagrangian iorm:

5 - oo (1)
2 12
g%--;:af (2)
;13
t.-;:.g.;&l (5)
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A e exp (£ /) ()

Xou (5)

where 7| 1s the mass traction of species A, vV 1s a frequency fac.or,

and E# is the activation energy, in units of (cz)e. The remaining

symbols have been defined previously. (page7).
In addition to these equations, we have the equations of state

p = p(1,V,7), (6)
1.2
where I = E - 3u is the specific internal energy, and

T = T(p,V). (1)

In the following, we assume that both species A and B are
polytropic gases with their respective internal energy functions given

by
T .
IA = —r—-—” 70_1 + I: and
T #
IB = 70171-15 + B’

wvhere 72 71, I: and I; are constants. Furthermore, we assume that at
any given value of p, V, and T the mixture of A and B Jbeys the ideal

gas law
PV uT (8)
and that the internal energy of the mixture of A and B 1is given by

I-MA+um)5.

With these assumptions, equation (6) becomes

7, (7,-1)(7,-1)
p= {I - [TII: + (1-ﬂ)l:]} [(7 317% ry u-ﬂ-ﬁ?_ﬂ (%') (9)

1l
and T is given by equation 8.

11




DIFFERENCE EQUATIONS

The partial differential equations (1) - (5) must be replaced by
& system of difference equations in order to obtain a numerical

solution. The equations (1) - (5) are all of the form

3y , OF

st T tE=0

where F and B are funciions of m, t and y. Such equations are called
conservation laws. and are of the form used in the difference methcd
propoced by Lex'® in 1954. In the Lax method time derivatives Yy, ere
replaced by

n_ 2 (yn-l n+l)
ot . At

where superscript j denotes the value of the vsriable at time,

t = 91 + Atd and subseript n refers to the spatial position m = nAm.
The spatial grid size Am is fixed whereas the time-step depends upon J.
Letting F = %'(Fg+i Fg:i) the difference equations approximating
equations (1)-(5) become

_ 33 _ .

viaTal Wi - w™) (10)
Jo= J 3-1 |

u = - 0 (pn+l pn-l) ' (11)

B - —[<pu>g;1 ()33 (12)

3 I # | ‘

no=T - vt Texp (£ /50 (23)
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5wyt @ (1)
2 -
gl .1 | (15)

;1 7o(7,-1)(7;-1) ] 3 [ad v p
pn vg (71_70) Tlg + (70_1).‘[]:11 {nnIA + (l nn)IB}] (l )

where Ad = atd/an.

The retio A = Atd/Am 1s calculated from the stability condition that

)\J L

Q—FE} for 0<b<1l
max a.n

n

and where a, the Lagrangian sound speed, is given by

1/2
g )+ (g7 o}

a'I].g--. ’ J _g
h7d{\7l-7o)nn + 7o-i} v

INITIAL AND BOUNDARY CONDITIONS

In terms of the non-dimensional variables previously defined, the
mass of gas A contained in the region 0 <X s 1 is equal to ome.

This
region is divided into N equal mass zones, i.e.,

Ama%-;

hence, for this section the Lagrangian mass coordinate has, initially,

the same numerical value as the Eulerian coordinate. The section

« <X <0 is replaced by a finite section contalning M mass zones.
The initial conditions are:

13
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o .
p,+6
o5 X =5
ép. +1
n .
o 0,0
5(pn'l) o PuVp 1,0
W . F o= = (u
> n 7070-1 2'n
1f;(Gp + 1) -
n
o - o .
=1 70-7/5

In the mmerical example given here p, = k.5, thus the ghock
speed, 1n units of the ambient sound speed of A, is 2,

The boundary condition that the particle velocity u be zero at
the reflecting wall is readily incorporated into the difference
method. This is accomplished by defining values at an imeginary
mesh-point, (J, N+1), as follows: Let

“1%+1. - u1'2--1

and all other values at (J,N+l) be equal to their respective values at
(3,8-1); thus equation (11), at n=l, automatically gives u.g = O. The
remaining values to be specified are:

b=l E’-25

7o =7 = T/5 I:-o

v-106 ].'g--26
1k




RESULT'S

The results of the numerical computation of equations (10) - (15)
are summarized in Figures 1-T. Figure 1 is a space-time plot of
selected particle paths and shows the general features of the flow.

In particular, the incident and reflected shocks and the reaction wave
are clearly evident. After interaction of the reaction wave and
reflecféa wave occurs, a double wave appears. (The double wave is
more evident in Figure 12), Each of the two waves appears to be travel-
ing at nearly constant velocity. The secondary wave, receding from
the first, is a shock wave traveling in gas B. The first wave appears
to have all the characteristics of a detonation as the values of the
pressure, etc, correspond to those expected from a detonation
transition of species A into species B, under the chosen initial
conditions. The observed double wave structure is similar to that
observed by Cher and Kistiakowskyll in their photographic studies of
detonation of certain hydrocarbon-cxygen mixtures. Cher and
Kistiakowsky concluded that "the secondary wave is due to entropy
increase in the rarefaction wave caused by a spontaneous reaction".
Analysis of the wave patterns observed in these computations will be
reported in subsequent reports, and it is expected that further
details concerning the double wave structure will be reported at that

time,

A typical pressure-distance curve, corresponding to a fixed time,
is shown in Figure 2. This pressure profile is typical of the pressure
wave after the occurrence of interaction between the reflected and
‘reacting wave. Negligible reaction has occurred ahead of the primary
wave (corresponds to peek pressure) and the conditions in this region
are, approximately, the same as behind the initial incident shock
front, i.e., p = 4.5, u = 1,25, etc. An ideal Chapman-Jouguet
detonation wave treveling into species A at these conditions, and
instantaneously converting A into B gives

15




Bog = BTO gy = 0.223T
ch. L ‘10691‘ D.- '600!.‘7 ’
vhere D denotes the speed of the wave, Thccan;puted values; -
corresponding to the peak pressure of Figure 2, are
. p=8h.62 V= 0,2239
u = =1.692 D = -6.045 |
The tail of the pressure profils of Figure 2, i.e., the nearly

‘constant pressure region adjacent to the wall, corresponds to the

region where the particle velocity is approximately zero. If we assume
that this region is connected to the detonation state by means of a
rarefaction wave, the pressure ratio at the wall would be 48.02 as -
compared with the computed pressure ratio of h8.1'f'. The vall pressure
at § = 1049, 300 time-steps later, is 48.02 and the quiescent region
occupies a corresponding greater region of the tube. Comparison of
these results with G, I. Taylor's similarity solution’> will be

reported in subsequent reports.

If we assume that the region bounded by the wall, the reflected
shock and the reaction wave is constant and, in particular, assume
the values of pressure and velocity are those given by the ideal gas
shock equo,izions:D , then for an incident shock pressure of 4.5, the
pressure and particle velocity in the reflected zone are p = 15 and
u = 0, The Chapman-Jouguet detonation wave values would be

Pog ™ 198.1 VCJ = 0.100k |
\ch = '209““ D= '7’“03 .

For comperison, Figure 3 shows the pressure, at constant time, just
prior to the interaction of reflected and reaction waves., The

pressure, corresponding to the peak, is 199.7 and the corresponding
values of u and V are

16




u = -3,059,
V = 0,1003,
and the reaction is traveling at speed D as -T.50k4.

Conditions behind the reflected wave, prior to the observed
development of the reaction, are not constant as can be seen in
Figures 4 and 5 which are, respectively, plots of the wall rressure
and wall temperature versus time.

The reaction is complete, i.e., N = 0, at the time corresponding
to the maximum pressure of Figure 3. The mass fraction, T, und the
specific volume ratio, at X = 1, are shown, respectively, in Figures 6 end 7.

If v in equation 12 is set equal to zero and the remaining _
perameters and conditions are unchanged, the problem considered is
merely that of normal shock reflection in an ideal gas. For purposes
of comparison and preliminary tests of accuracy vV was set equal to
zero and the corresponding flow computec. In Figure 8 the particle
paths are plotted. The results are those expected, i.e., the particle
velocity is (nearly) zero behind the reflected wave and the pressure
Jump is that given by the well-known shock reflection formnlaslB. The
pressure as a function of Eulerian distance is plotted for various
grid sizes in Figure 9, and it is seen that the shock front becomes
steeper as grid size decreases.

In Figures 10 and 11, percent relative errors in V and X are
shown as functions of grid size. The errors in p and u are negligibdble,
at these chosen points, for all grid sizes.

The effect of increasing the activation energy on the resulting
reacting flow is 11llustrated in Fig. 12. The activation energy B' vas
increased from 25 to 28.6. The values of the remaining parameters are
the same as those used to obtain the results illustrated in Fig. l.

17
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Fig. 2 Pressure

Ratio vs Scaled Distance
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ig. 3 Pressure Ratio vs Scaled Distance
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FIG. 8 REFLECTED SHOCK WAVE IN A NON-REACTING GAS
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Fig.ll Percent Relative Error in Vand X at m=0.75,t= 0.6
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COMPUTED PARTICLE PATHS
ACTIVATION ENERGY =28.6

FIG 12: REFLECTED SHOCK INITIATION OF AN EXOTHERMIC REACTION
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